38 research outputs found

    Link Prediction Investigation of Dynamic Information Flow in Epilepsy

    Get PDF
    This work was supported partly by the National Natural Science Foundation of China (Grant No.81460206 and No.81660298), Scientific Research Foundation for Doctors of Guizhou Medical University (No.Yuan Bo He J [2014] 003) and by the 2011 Collaborative Innovation Program of Guizhou Province (No. 2015–04 to ZZ).Peer reviewedPublisher PD

    Wireless sensor platform for harsh environments

    Get PDF
    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna

    Generation of ring-shaped optical vortices in dissipative media by inhomogeneous effective diffusion

    Get PDF
    By means of systematic simulations we demonstrate generation of a variety of ring-shaped optical vortices (OVs) from a two-dimensional input with embedded vorticity, in a dissipative medium modeled by the cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion (spatial-filtering) term, which is anisotropic in the transverse plane and periodically modulated in the longitudinal direction. We show the generation of stable square- and gear-shaped OVs, as well as tilted oval-shaped vortex rings, and string-shaped bound states built of a central fundamental soliton and two vortex satellites, or of three fundamental solitons. Their shape can be adjusted by tuning the strength and modulation period of the inhomogeneous diffusion. Stability domains of the generated OVs are identified by varying the vorticity of the input and parameters of the inhomogeneous diffusion. The results suggest a method to generate new types of ring-shaped OVs with applications to the work with structured light.Comment: 24 pages, 5 figures; Nonlinear Dynamics, in pres

    Optimization of Surface-Enhanced Raman Spectroscopy Detection Conditions for Interaction between Gonyautoxin and Its Aptamer

    No full text
    This study aimed to optimize the detection conditions for surface-enhanced Raman spectroscopy (SERS) of single-stranded DNA (ssDNA) in four different buffers and explore the interaction between gonyautoxin (GTX1/4) and its aptamer, GO18. The influence of the silver colloid solution and MgSO4 concentration (0.01 M) added under four different buffered conditions on DNA SERS detection was studied to determine the optimum detection conditions. We explored the interaction between GTX1/4 and GO18 under the same conditions as those in the systematic evolution of ligands by exponential enrichment technique, using Tris-HCl as the buffer. The characteristic peaks of GO18 and its G-quadruplex were detected in four different buffer solutions. The change in peak intensity at 1656 cm−1 confirmed that the binding site between GTX1/4 and GO18 was in the G-quadruplex plane. The relative intensity of the peak at 1656 cm−1 was selected for the GTX1/4–GO18 complex (I1656/I1099) to plot the ratio of GTX1/4 in the Tris-HCl buffer condition (including 30 μL of silver colloid solution and 2 μL of MgSO4), and a linear relationship was obtained as follows: Y = 0.1867X + 1.2205 (R2 = 0.9239). This study provides a basis for subsequent application of SERS in the detection of ssDNA, as well as the binding of small toxins and aptamers

    Analysis of the Influence of Ferromagnetic Material on the Output Characteristics of Halbach Array Energy-Harvesting Structure

    No full text
    Due to the particular arrangement of permanent magnets, a Halbach array has an significant effect of magnetism and magnetic self-shielding. It can stretch the magnetic lines on one side of the magnetic field to obtain an ideal sinusoidal unilateral magnetic field. It has a wide application range in the field of energy harvesting. In practical applications, magnetic induction intensity of each point in magnetic field is not only related to the induced current and conductor but also related to the permeability of the medium (also known as a magnetic medium) in the magnetic field. Permeability is the physical quantity that represents the magnetism of the magnetic medium, which indicates the resistance of magnetic flux or the ability of magnetic lines to be connected in the magnetic field after coil flows through current in space or in the core space. When the permeability is much greater than one, it is a ferromagnetic material. Adding a ferromagnetic material in a magnetic field can increase the magnetic induction intensity B. Iron sheet is a good magnetic material, and it is easy to magnetize to generate an additional magnetic field to strengthen the original magnetic field, and it is easy to obtain at low cost. In this paper, in order to explore the influence of ferromagnetic material on the magnetic field and energy harvesting efficiency of the Halbach array energy harvesting structure, iron sheets are installed on the periphery of the Halbach array rotor. Iron sheet has excellent magnetic permeability. Through simulation, angle between iron sheet and Halbach array, radian size of iron sheet itself and distance between iron sheet and Halbach array can all have different effects on the magnetic field of the Halbach array. It shows that adding iron sheets as a magnetic medium could indeed change the magnetic field distribution of the Halbach array and increase energy harvesting efficiency. In this paper, a Halbach array can be used to provide electrical power for passive wireless low-power devices

    Intravenous immunoglobulin accompanied with high-dose methylprednisolone therapy for 17 children with anti-N-methyl-D-aspartate receptor encephalitis: Clinic and nursing

    No full text
    Objective: An increasing number of pediatric patients are being diagnosed with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, whose treatment requires immunotherapy through nursing interventions. This study aimed to analyze the clinical features and long-term prognosis of pediatric anti-NMDAR encephalitis and to gather nursing experiences of immunotherapy. Methods: Seventeen children diagnosed with anti-NMDAR encephalitis were admitted to the pediatric department. They were subjected to a therapy of intravenous immunoglobulin (IVIG) accompanied with high-dose methylprednisolone (HDMP). Multidisciplinary cooperation and intensive care were used to manage them. The effects of nursing intervention and therapy were repeatedly assessed and analyzed throughout the course of treatment and recovery. Results: None of the patients manifested adverse drug reaction (ADR) during IVIG administration. At the first administration of HDMP, ADRs were promptly and efficiently treated in four patients (24%; i.e., one case each of hyperglycosemia, hypertension, aggravated symptoms, and gastrointestinal bleed). Two patients underwent rehabilitation, and six patients received hyperbaric oxygenation during hospitalization. Nine patients with indwelling gastric tubes experienced four times of unplanned extubation. Hospital stay ranged from 11 days to 59 days, with the mean duration of 26 days. Discharge evaluation revealed that 16 patients who scored 0–2 on the modified Rankin scale presented obvious remission, and one patient who had a mRS score of 4 exhibited less improvement. The mRS scores of hospitalization, discharge, and six-month follow-up displayed statistically significant differences. Conclusions: Nursing interventions of immunotherapy ensures the security of IVIG administration. Multidisciplinary cooperation promotes remission. Our findings can serve as reference for healthcare teams

    Mixed cerebrovascular disease in an elderly patient with mixed vascular risk factors: a case report

    No full text
    Abstract Background Mixed cerebrovascular disease is a diagnostic entity that presents with hemorrhagic and ischemic stroke clinically and/or subclinically. Here, we report a patient with mixed vascular risk factors, who presented with multiple intracerebral hemorrhages and a simultaneously occurring cerebral infarction with hemorrhagic transformation. Case presentation A 63-year-old male with no history of trauma or prior neurological disease presented with a sudden onset of weakness in his right limbs, followed by an episode of focal seizure without impaired awareness. The patient had a 4-year history of deep vein thrombosis in the lower limbs, and a 2-year history of Raynaud’s phenomenon in the hands. He also had a family history of hypertension and thrombophilia. Head computed tomography plain scans showed two high densities in the bilateral parietal lobes and one mixed density in the left frontal lobe. The patient was diagnosed with mixed cerebrovascular disease. In this report, we make a systematic clinical reasoning regarding the etiological diagnosis, and discuss the possible pathogenic mechanisms leading to mixed cerebrovascular disease. We exclude coagulopathy, endocarditis, atrial fibrillation, patent foramen ovale, brain tumor, cerebral venous thrombosis, cerebral vascular malformation, cerebral amyloid angiopathy and vasculitis as causative factors. We identify hypertension, hereditary protein S deficiency, hypercholesteremia and hyperhomocysteinemia as contributing etiologies in this case. Conclusion This case presents complex underlying mechanisms of mixed cerebrovascular disease, in which hypertension and hyperhomocysteinemia are considered to play a central role
    corecore